COPPER-CATALYZED REACTION OF GRIGNARD REAGENTS WITH β -PROPIOLACTONES: A CONVENIENT METHOD FOR THE SYNTHESIS OF β -SUBSTITUTED PROPIONIC ACIDS

Toshio SATO, Tatsuo KAWARA, Masatoshi KAWASHIMA, and Tamotsu FUJISAWA*

Chemistry Department of Resources, Mie University, Tsu, Mie 514

Grignard reagents react with $\beta\text{-propiolactones}$ in the presence of a copper(I) catalyst to give $\beta\text{-substituted}$ propionic acids in high yields.

Copper-catalyzed reaction of Grignard reagents is an extensively useful method for a new carbon-carbon bond formation; representatives are the substitution reactions $^{1)}$ with organic halides, tosylates, and allylic acetates, and the conjugate addition to α,β -unsaturated carbonyl compounds. $^{2,3)}$ Recently, Huynh et al. have reported that ring-opening of cyclic ethers such as oxiranes and oxetanes by Grignard reagents is also accelerated by a copper(I) catalyst. $^{4)}$ A previous study by Gresham et al. has shown that Grignard reagents react with β -propiolactone to afford a mixture of β -halopropionic acids, vinyl ketones, β -substituted propionic acids, etc. $^{5)}$ If the β -substituted acids could be selectively formed by this reaction, it will provide a useful method for three carbon homologation terminating with a carboxyl function. We wish to report here the regiospecific reaction of Grignard reagents with β -propiolactones in the presence of a copper(I) catalyst which affords β -substituted propionic acids in high yields.

When β -propiolactone (1 equiv) was treated with butylmagnesium bromide (1.2 equiv) and copper(I) chloride (0.02 equiv) in THF at 0 $^{\rm O}$ C for 15 min, heptanoic acid was obtained in 90% yield. Copper(I) bromide and iodide showed a similar effect as the catalyst. Since copper(I) salts were insoluble in THF, homogeneous reaction using butylmagnesium bromide and copper(I) iodide was carried out by

adding dimethyl sulfide as a co-solvent of THF, but the yield of the acid was not affected. Ether, instead of THF, was employed as a solvent to result in a decrease in the yield (50%).

The reaction of several representative Grignard reagents with β -propiolactone was studied as shown in Table I. Grignard reagents attacked regiospecifically the methylene carbon of β -propiolactone to afford β -substituted propionic acids in good yields, whether the substituent is primary, secondary, or tertiary alkyl group, or phenyl group. Vinylmagnesium bromide gave the corresponding acid in a moderate yield. However, allylmagnesium bromide gave only a trace amount of 5-hexenoic acid. 6

In order to find the scope and limitations of the ring-opening reaction, the reaction of methyl-substituted β -propiolactones with the Grignard reagents in the presence of a copper(I) catalyst was examined. The result is shown in Table II. Butylmagnesium bromide reacted with α -methyl, β -methyl- and α , α -dimethyl- β -propiolactones to give the β -substituted propionic acids in yields of over 80%. In the case of the other Grignard reagents, however, the introduction of a substituent on the lactone ring affected largely the yields of the corresponding acids. In the

Table I. Reaction of $\beta\text{-Propiolactone}$ with Grignard Reagents in the Presence of $\text{CuCl}^{\,\text{a}}$

RMgX	Product	Yi glc	eld isolated
MeMgBr	ОН	89	87
BuMgBr	ОН	90	90
t-BuMgCl	ОН	89	85
i-PrMgBr	ОН	78	74
PhMgBr	Ph	78	77
CH ₂ =CHMgBr	ОН	67	59
CH ₂ =CHCH ₂ MgBr	ОН	trac	e -

 $[^]a$ All reactions were performed on 2 mmol scales at 0 o C for 15 min. The molar ratio of RMgX and $\beta\text{-propiolactone}$ is 1.2:1.0. The yields were based on $\beta\text{-propiolactone}$.

case of the reaction of t-butylmagnesium chloride, α -methyl- and β -methyl- β -propiolactones showed similar reactivity to that of unsubstituted one. On the other hand, α,α -dimethyl one gave the corresponding acid in much lower yield due to simultaneous formation of pivalic acid, a reductive ring-opening product. In the case of the reaction of methylmagnesium bromide, α -methyl- and α,α -dimethyl- β -propiolactones afforded the desired acids in more than 80% yield, whereas β -methyl one gave isovaleric acid in 52% yields. The reaction of Grignard reagents with sp² carbon atom such as phenyl and vinyl groups with β -methyl- and α,α -dimethyl- β -propiolactones gave only small amounts of the desired acids.

$$(CH_3)_n \longrightarrow O$$
 + RMgX $\xrightarrow{CuCl(2mol\%)}$ R $\xrightarrow{CuCl(2mol\%)}$ OH

The following procedure for the synthesis of heptanoic acid is representative. Butylmagnesium bromide (1.0M in ether, 2.4 mmol) was slowly added to a suspension of CuCl (4 mg, 0.04 mmol) in 6 ml of THF at 0 $^{\rm O}$ C under argon. Then, β -propiolactone (0.144g, 2 mmol) in 2 ml of THF was added dropwise. The mixture was stirred at 0 $^{\rm O}$ C for 15 min and quenched by adding 3N HCl solution. Heptanoic acid was extracted

Table II. Products and Yields (%) of the Copper-Catalyzed Reaction of Grignard Reagents with Methyl-Substituted β -Propiolactones a

Reactant	Z,°	L6°	260
MeMgBr	OH (83)	↓ Q _{OH} (52)	OH (80)
BuMgBr	OH (89)	OH (81)	√ OH (79)
t-BuMgCl	OH (89)	OH (84)	Х ОН (24) ^b
CH ₂ =CHMgBr	OH (60)b,c	OH (trace)	→ OH (trace)
PhMgBr	Ph OH (52)	Ph OH (13)	Ph (8) b

 $^{^{\}rm a}$ All reactions catalyzed by CuCl were performed on 2 mmol scales at 0 $^{\rm O}{\rm C}$ for 15 min, and the yields were isolated ones unless otherwise noted. $^{\rm b}$ Yields were determined by NMR. $^{\rm C}$ Reaction was carried out at -30 $^{\rm O}{\rm C}$ for 2 h .

with 3N NaOH solution from the organic layer. The alkaline solution was acidified, and extraction with ether and concentration gave pure heptanoic acid (90%).

Recently, we reported the regiospecific ring-opening of β -propiolactones by diorganocuprates. ⁷⁾ Although the reaction of divinyl- and diallylcuprates afforded the corresponding acids in higher yields than those obtained by the reaction of Grignard reagents, the copper-catalyzed reaction of Grignard reagents has some advantages as follows: (1) an equimolecular amount of the Grignard reagent to β -propiolactone was sufficient for the completion of the reaction, and (2) a simplicity of the operative conditions such as, short reaction time and moderate reaction temperature. Thus, the ring-opening of β -propiolactones with Grignard reagents provides a convenient procedure for the synthesis of β -substituted propionic acids, which is alternative to the conjugate addition of organometallic compounds to α, β -unsaturated acids or esters. ⁸⁾

Acknowledgment: We wish to thank Messrs. H. Shimizu and Y. Ito for their assistance in the experimental work.

References and Notes

- 1) For example, M. Tamura and J. K. Kochi, J. Organomet. Chem., 42, 205 (1972); L. Friedman and A. Shani, J. Am. Chem. Soc., 96, 7101 (1964); M. Schlosser, Angew. Chem. Int. Ed. Engl., 13, 707 (1974); J. F. Normant, J. Villieras, and F. Scott, Tetrahedron Lett., 3263 (1977); F. Derguini-Boumechal and G. Linstrumelle, Tetrahedron Lett., 3225 (1976).
- 2) G. H. Posner, Org. React., 19, 1 (1972).
- 3) Conjugate addition to ethyl acrylate using excess Grignard reagents in the presence of copper(I) chloride under well defined conditions gives the adducts in good to fair yields; S. Lin, J. Org. Chem., 42, 3209 (1977).
- 4) C. Huynh, F. Derguini-Boumechal, and G. Linstrumelle, Tetrahedron Lett., 1503 (1979).
- 5) (a) T. L. Gresham, J. E. Jansen, F. W. Shaver, and R. A. Bandert, J. Am. Chem. Soc., 71, 2807 (1949); (b) C. G. Stuckwisch and J. V. Bailey, J. Org. Chem., 28, 2362 (1963).
- 6) Allylmagnesium bromide attacked exclusively the carbonyl carbon of β -propiolactone to result in a formation of 3-allyl-5-hexene-1,3-diol as a main product. On the contrary, Stuckwisch et al. reported that the reaction of β -propiolactone with allylmagnesium bromide without a copper catalyst in ether gave 5-hexenoic acid in 54% yield. 5b)
- 7) T. Fuiisawa, T. Sato, T. Kawara, M. Kawashima, H. Shimizu, and Y. Ito, Tetrahedron Lett., in press (1980). An analogous result of the reaction of β-propiolactone with diorganocuprates or with Grignard reagents in the presence of a copper(I) salt was independently reported in a just arrived journal; J. F. Normant, A. Alexakis, and G. Cahiez, ibid., 21, 935 (1980).
- 8) Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 100, 3104 (1978).